Study of defects in linear FFAG, preliminary steps

Kicks method Zgoubi developments

1 Closed orbits errors

We first study equivalent kicks for further comparisons with tracking simulations.

Dipolar type of errors due to magnet misalignement and dipole field defects can be approximated by pairs of entrance/exit kicks such that :

$$\theta_{en}/\theta_{ex} = \Delta(Bl)/(B\rho)$$

 $\Delta(Bl)$ representing the effect of the imperfection

The kicks equivalent to the defects are calculated using:

- Matrix formalism
- Geometric considerations concerning misaligned magnet

1.1 Use of matrix formalism

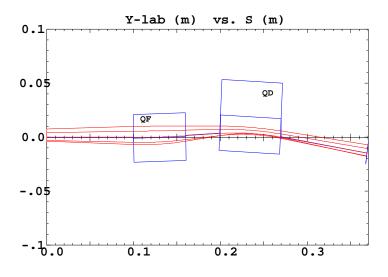


FIG. 1 – EMMA cell.

Combined fonction magnet are represented with the matrix :

- QF,
$$K > 0$$
 $B_{dip} < 0$

$$M_{x,foc} = \begin{bmatrix} \cos\sqrt{K}L & \frac{1}{\sqrt{K}}\sin\sqrt{K}L & \frac{B_{dip}}{g}(\cos\sqrt{K}L - 1) \\ -\sqrt{K}\sin\sqrt{K}L & \cos\sqrt{K}L & -\frac{B_{dip}}{g}\sqrt{K}\sin\sqrt{K}L \end{bmatrix} \quad M_{y,foc} = \begin{bmatrix} \cosh\sqrt{K}L & \frac{1}{\sqrt{K}}\sinh\sqrt{K}L & 0 \\ \sqrt{K}\sinh\sqrt{K}L & \cosh\sqrt{K}L & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- QD,
$$K < 0$$
 $B_{dip} > 0$

$$M_{x,defoc} = \begin{bmatrix} \cosh\sqrt{|K|}L & \frac{1}{\sqrt{|K|}}\sinh\sqrt{|K|}L & \frac{B_{dip}}{g}(\cosh\sqrt{|K|}L-1) \\ \sqrt{|K|}\sinh\sqrt{|K|}L & \cosh\sqrt{|K|}L & \frac{B_{dip}}{g}\sqrt{|K|}\sinh\sqrt{|K|}L \end{bmatrix} \quad M_{y,defoc} = \begin{bmatrix} \cos\sqrt{|K|}L & \frac{1}{\sqrt{|K|}}\sin\sqrt{|K|}L & 0 \\ -\sqrt{|K|}\sin\sqrt{|K|}L & \cos\sqrt{|K|}L & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

x,y,x,y' are coordinates with regard to perfect magnet axis and X,Y,X',Y' with regard to misaligned magnet axis. M_x and M_y are transfert matrix of misaligned magnet:

$$\begin{pmatrix} X_s \\ X'_s \end{pmatrix} = M_x \begin{pmatrix} X_e \\ X'_e \end{pmatrix} \qquad \begin{pmatrix} Y_s \\ Y'_s \end{pmatrix} = M_y \begin{pmatrix} Y_e \\ Y'_e \end{pmatrix}$$

Kicks are placed at entrance and exit of perfect magnet:

$$X_{e} = x_{e}$$
 $x_{s} = X_{s}$ $Y_{e} = y_{e}$ $y_{s} = Y_{s}$ $X'_{e} = x'_{e} + \theta_{xe}$ $x'_{s} = X'_{s} + \theta_{xs}$ $Y'_{e} = y'_{e} + \theta_{ye}$ $y'_{s} = Y'_{s} + \theta_{ys}$ (1)

 M_x (or M_z) are under the form

$$M_x = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array} \right]$$

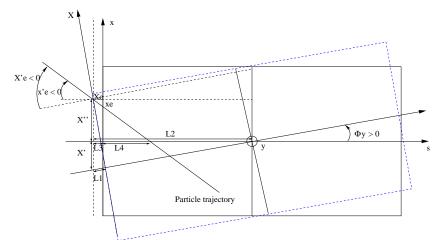
Transfert could be written

$$\begin{bmatrix} x_s \\ x'_s \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \theta_{xs} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \theta_{xe} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_e \\ x'_e \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_s \\ x_s' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c + b \theta_{xe} \\ d & e & f + e \theta_{xe} + \theta_{xs} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_e \\ x_e' \\ 1 \end{bmatrix}$$
 (2)

we need to find relations (1) for a type of imperfection. As we know matrix $M_{x,z}$ (see previous) we can calculate the new transfert matrix and identify to (2) to extract θ_e , θ_s .

1.2 Example : Vertical rotation ϕ_y



Geometric relations are (with first order approximation):

$$X_e = x_e + \phi_y \frac{L}{2}$$
 $x_s = X_s + \phi_y \frac{L}{2}$
 $X'_e = x'_e - \phi_y$ $x'_s = X'_s + \phi_y$

Considering QF we get:

$$\begin{bmatrix} x_s \\ x'_s \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \phi_y \frac{L}{2} \\ 0 & 1 & \phi_y \\ 0 & 0 & 1 \end{bmatrix} M_{x,foc} \begin{bmatrix} 1 & 0 & \phi_y \frac{L}{2} \\ 0 & 1 & -\phi_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_e \\ x'_e \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c - b\phi_y + \frac{L\phi_y}{2} + a\frac{L}{2}\phi_y \\ d & e & f + \phi_y - e + d\frac{L}{2}\phi_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_e \\ x'_e \\ 1 \end{bmatrix}$$

Identifying 2 et 3 we get:

$$b \theta_{xe} = -b \phi_y + \frac{L}{2} \phi_y (1+a)$$

$$e \theta_{xe} + \theta_{xs} = \phi_y - e + d\frac{L}{2} \phi_y$$

and finally:

For QF:
$$\theta_{xe} = -\theta_{xs} = \left[\frac{\sqrt{K_F} \frac{L}{2}}{\tan \sqrt{K_F} \frac{L}{2}} - 1\right] \phi_{y_F}$$

For QD: $\theta_{xe} = -\theta_{xs} = \left[\frac{\sqrt{|K_D|} \frac{L}{2}}{\tanh \sqrt{|K_D|} \frac{L}{2}} - 1\right] \phi_{y_D}$

We find that entrance and exit kicks have the same amplitude and are equal or opposite

horizontal kicks

Defects:

horizontal displacement Foc.
$$\theta_{xe} = \theta_{xs} = \sqrt{K} \tan{(\sqrt{K} \frac{L}{2})} \delta x_F$$

Def. $\theta_{xe} = \theta_{xs} = -\sqrt{|K|} \tanh{(\sqrt{|K|} \frac{L}{2})} \delta x_D$

Def.
$$\theta_{xe} = \theta_{xs} = -\sqrt{|K|} \tanh(\sqrt{|K|\frac{L}{2}}) \delta x_D$$

vertical rotation Foc.
$$\theta_{xe} = -\theta_{xs} = \left[\frac{\sqrt{K_F} \frac{L}{2}}{\tan \sqrt{K_F} \frac{L}{2}} - 1\right] \phi_{y_F}$$

Def.
$$\theta_{xe} = -\theta_{xs} = \left[\frac{\sqrt{|K_D|^2 \frac{L}{2}}}{\tanh \sqrt{|K_D|} \frac{L}{2}} - 1 \right] \phi_{y_D}$$

Dipole field defect Foc.
$$\theta_{xe} = \theta_{xs} = -\frac{B_{dip}}{g} \sqrt{K} \tan{(\sqrt{K}\frac{L}{2})} \frac{\Delta B}{B_{dip}}$$

Foc.
$$\theta_{xe} = \theta_{xs} = -\frac{B_{dip}}{g} \sqrt{K} \tan{\left(\sqrt{K} \frac{L}{2}\right)} \frac{\Delta B}{B_{dip}}$$

Def. $\theta_{xe} = \theta_{xs} = \frac{B_{dip}}{g} \sqrt{|K|} \tanh{\left(\sqrt{|K| \frac{L}{2}}\right)} \frac{\Delta B}{B_{dip}}$

vertical kicks

Defects:

vertical displacement Foc.
$$\theta_{ye} = \theta_{ys} = -\sqrt{K} \tanh{(\sqrt{K\frac{L}{2}})} \delta y_F$$

Def. $\theta_{ye} = \theta_{ys} = \sqrt{|K|} \tan{(\sqrt{|K|\frac{L}{2}})} \delta y_D$

Def.
$$\theta_{ye} = \theta_{ys} = \sqrt{|K|} \tan\left(\sqrt{|K|} \frac{L}{2}\right) \delta y_L$$

horizontal rotation Foc.
$$\theta_{ye} = -\theta_{ys} = \left[\frac{\sqrt{K_F} \frac{L}{2}}{\tanh \sqrt{K_F} \frac{L}{2}} - 1\right] \phi_{y_F}$$

Def.
$$\theta_{ye} = -\theta_{ys} = \left[\frac{\sqrt{|K_D|} \frac{L^2}{2}}{\tan \sqrt{|K_D|} \frac{L}{2}} - 1\right] \phi_{y_D}$$

1.3 Calcul of kicks for EMMA

		QD		QF			
E MeV	10	15	20	10	15	20	
<u>Dév. ang. hor :</u>							
$\theta/\delta x_{D/F}$	-4.60	-3.12	-2.36	7.18	4.67	3.46	
$\theta/\phi_{y_{D/F}}$	0.056	0.037	0.028	-0.068	-0.045	-0.034	
$ heta/\Delta B/B_{dip}$	-0.077	-0.052	-0.0395	0.049	0.032	0.024	
Dév. ang. vert :							
$ heta/\delta y_{D/F}$	5.15	3.36	2.495	-6.275	-4.27	-3.23	
$ heta/\phi_{y_{D/F}}$	-0.057	-0.038	-0.028	0.066	0.044	0.033	

1.4 Comparison Ray-tracing / Matrix

	10 MeV							
		$x_{e,co}$	$x'_{e,co}$	$y_{s,co}$	$y'_{s,co}$			
QF enter		-0.57215	-55.73924	0.0001	0.0000			
		$x_{s,co}$	$x'_{s,co}$	$y_{s,co}$	$y'_{s,co}$			
Perfect magnet	Ray-tracing	-0.41546	104.584	0.0001397	0.01386			
	Matrix	-0.41617	104.380	0.0001406	0.01441			
with defect δx_F =10 μ m	Ray-tracing	-0.41510	104.696					
	Matrix	-0.41581	104.492					
with defect δy_F =10 μ m	Ray-tracing			-0.0002577	-0.12475			
	Matrix			-0.0002660	-0.12969			

1.5 Numerical simulations of defects

Gaussain distribution of defects, the sigma values add quadratically

$$\sigma_{co}^2 = \left[\frac{x}{\delta x}\right]_{QF} \sigma_{\delta x}^2 + \left[\frac{x}{\delta x}\right]_{QD} \sigma_{\delta x}^2 + \left[\frac{x}{\phi_y}\right]_{QF} \sigma_{\phi y}^2 + \left[\frac{x}{\phi_y}\right]_{QF} \sigma_{\phi y}^2 + \left[\frac{x}{\Delta B/B}\right]_{QF} \sigma_{\Delta B/B}^2 + \left[\frac{x}{\Delta B/B}\right]_{QD} \sigma_{\Delta B/B}^2$$

Sensitivity coefficient $\left[\frac{x}{\delta x}\right]$ are calculated numerically with a Zgoubi procedure

```
#!/bin/bash
# 1/ genDefect : generate zgoubi.dat with random defects, from defect free
     structure read in zgoubi_NoDefect.dat.
     The random seed is read from genDef and renewed (new value stored in
     genDefect.seed) at end of genDefect
# 2/ run zgoubi using AVEAGEORB and REBELOTE/NREB=100, so to get PU records
     over 100 turns
# 3/ readPU : reads PUs from last pass in zgoubi.res, and cumulates (run after
     run) into readPU.out
# 4/ content of readPU.out is s, <x>, <xp>, <z>, <zp>, PU#, and can be plotted
     using zpop/7/20
     f77 -o readPU readPU.f
     f77 -o genDefect genDefect.f
# 5/ Optionnaly, ./genDefect_IniSeed will force initial seed to given value,
   this allows checks thanks to identical series of random number series
rm readPU.out
rm b_zgoubi*.fai
./gebDefect_IniSeed
        echo ' COMPUTATION/STORAGE OF C.O. INDUCED BY MAGNET DEFECTS'
        echo ' '
X=1
while [ $X -le 100 ]
do
        echo ''
        echo ' -----'
        echo 'c.o. computation #'$X ' follows'
X=$((X+1))
        echo 'c.o. computation #'$X
       ~/zgoubi/source/zgoubi
       ./readPU
done
exit
```

1.6 Conclusions

We expect to observe a correlation beetween numerical sensitivity coefficient and amplitude of kicks calculated analytically.

It could yield to compare the relative importance of defects on the closed orbit.

In the future

- Determine tolerance for a chosen σ_{co}
- Transmission simulations in presence of defects